

Novel Education and Training Tools based on digital applications related to hydrogen and fuel cell technologies

### Deliverable D3.6:

Hands-on Training of Industrial Users, Session 1



Grant agreement no. FCH - 2 JU - 736648

D3.6: Hands-on Training of Industrial Users, Session 1

| Due date of deliverable according DoA         | 30 <sup>th</sup> August 2018                                                                                     |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Completion date of deliverable                | 30 <sup>th</sup> August 2018                                                                                     |
| Dissemination level (CO, CI, PU)              | PU                                                                                                               |
| Nature (other or report)                      | Report                                                                                                           |
| Version of deliverable                        | 1.0                                                                                                              |
| File name (share point version)               | 180829_D3.4 Hands-on Session 1 _v1.3.docx                                                                        |
| Responsible partner for deliverable (acronym) | UU                                                                                                               |
| Means of verification                         | MS3.3. Database of stakeholders for participation in e-Laboratory hands-on session 1. Milestone dedicated to WP3 |
| Contributing partners (acronyms)              | UU, NCSRD, IEES, PersEE, UNIPG, KIT                                                                              |

NET-Tools project is co-funded by the European Commission within the

Framework Program HORIZON 2020



#### Copyright

This Document has been created within the HORIZON 2020 project NET-Tools. The utilization and release of this document is subject to the conditions of the contract within the EU Framework Program HORIZON 2020. Project reference is Grant agreement no. FCH - 2JU - 736648



If deliverable does not get finished as scheduled in description of activity, please add a short explanatory statement. (To be done by responsible person of deliverable)

| Explanatory Statement: |  |
|------------------------|--|
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |



#### **Document History (authors and co-authors)**

| Issue Date | Version | Changes Made/Comments                              |
|------------|---------|----------------------------------------------------|
| 06.07.18   | 0.0     | Inputs provided by D. Paskalev (IEES)              |
| 06.07.18   | 0.1     | Contribution provided by L. Grand-Clément (PersEE) |
| 07.07.18   | 0.2     | Contribution provided by O. Jedicke (KIT)          |
| 16.08.18   | 1.0     | First draft by V. Shentsov (UU)                    |
| 27.08.18   | 1.1     | Corrections by S. Giannissi (NCSRD)                |
| 27.08.18   | 1.2     | Contribution provided by G. Cinti (UNIPG)          |
| 27.08.18   | 1.3     | Final compilation by V. Shentsov (UU)              |
|            |         |                                                    |

#### Copyright

This Document has been created within the HORIZON 2020 project NET-Tools. The utilization and release of this document is subject to the conditions of the contract within the EU Framework Program HORIZON 2020. Project reference is Grant agreement no. FCH -2 JU -736648



#### **Table of Contents**

| 1 | INTRODUCTION                                    | <del>6</del> |
|---|-------------------------------------------------|--------------|
|   | INVITATIONS AND NUMBER OF ADDRESSEES            |              |
|   | REGISTRATION                                    |              |
|   | PLATFORM AND TESTING ORGANISATION               |              |
|   | REGISTERED STATISTICS                           |              |
|   | HANDS-ON ORGANISATION                           |              |
|   | ANNEX 1: FEEDBACK RESULTS FROM HANDS ON SESSION |              |
|   | ANNEX 2: REPORT ON 2 <sup>ND</sup> E-NEWSLETTER |              |



#### 1 Introduction

First hands-on training session on use of e-laboratory of NET-Tools project was hosted by UU as an online webinar on June 27<sup>th</sup>, 2018.

The hands-on session was organised in order to help users to understand the online engineering tools in various directions i.e. Safety, Fuel Cells, Renewable energy, Electrochemistry, Properties, Storage etc. and use them in theirs day-to-day activities, calculating different parameters in their field.

The scope of this session was to engage with and gain traction from a wider FCH community of industry, institutions, research organisations and universities concerning the further development of engineering digital tools. In particular, the NET-Tools partners wish to incorporate the demands and requests from industry and institutions others than the academic ones, in order to form the basis of the work to date.

From the interaction with users the consortium, received the feedback from using the e-Laboratory, which will help to advance the platform.

#### 2 Invitations and number of addressees

In order to disseminate the information about the project outcomes and e-Laboratory, an invitation to attend had been distributed to the leading European stakeholders, including representatives from academia, working in hydrogen safety area, industry and regulating authorities. An advertisement for the webinar was also posted at the project website.

The invitation has successfully delivered to 8395 addresses. The emails were provided by partners, as shown in the Table 1 below.

| Partner | Addresses number |
|---------|------------------|
| IEES    | 12               |
| UNIPG   | 691              |
| KIT     | 18               |
| UU      | 7674             |
| Total:  | 8395             |

Table 1 – Number of successfully delivered emails provided by partners.

The Mailchimp online service was used to deliver the invitations and control the statistics, and an invitation letter is provided in Figure 1. The invitation has a registration button so that all who would like to attend should be registered.

Separate invitation and registration link were distributed by UNIPG partner to 691 recipients through the 2<sup>nd</sup> e-NEWSLETTER. The report on activity is presented in ANNEX 2: Report on 2<sup>nd</sup> e-Newsletter as an embedded pdf.





Dear Reader,

The NET-Tools project partners would like to invite you to attend our 1<sup>st</sup> Hands-on Session in the use of e-Laboratory, which will take place online on 27<sup>th</sup> June 2018.

Two sessions are planned within the project. These sessions will help users to understand the online engineering tools in various directions i.e. Safety, Fuel Cells, Renewable energy, Electrochemistry, Properties, Storage etc. and use them in theirs day-to-day activities, calculating different parameters in their field. The consortium, in turn, will benefit from the interaction with users by getting the feedback from using it, which will help to advance the platform.

The scope of this session is to engage with and gain traction from a wider FCH community of industry, institutions, research organisations and universities concerning the further development of engineering digital tools. In particular, the NET-Tools partners wish to incorporate the demands and requests from industry and institutions others than the academic ones, have formed the basis of the work to date.

We encourage you to register and reserve a place at your earliest convenience. You will receive credentials to connect to the NET-Tools platform and its content in due course after the registration. The webinar will be split into several sessions - please check a box for each session you would like to participate in.

Looking forward to see you at webinar where we will discuss the implemented tools and you can receive answers on all you questions.



Figure 1 –Invitation to hands-on session.

#### 3 Registration

Upon pressing the registration, button/link the registration form pops-up prompting users to register, as shown in Figure 2.



| Hands-on session registration                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Please register for an online hands-on session on the use of e-Laboratory (NET-Tools). You will receive credentials to connect to the NET-Tools platform in due course after the registration. The webinar will be split into several sessions - please check a box for each session you would like to participate in |
| Email Address                                                                                                                                                                                                                                                                                                         |
| First Name                                                                                                                                                                                                                                                                                                            |
| Last Name                                                                                                                                                                                                                                                                                                             |
| Company                                                                                                                                                                                                                                                                                                               |
| Why you would like to attend the event                                                                                                                                                                                                                                                                                |
| Please check the session you would like to attend:                                                                                                                                                                                                                                                                    |
| Safety tools  Fuel Cells tools                                                                                                                                                                                                                                                                                        |
| Renewable energy, electrochemistry and property tools                                                                                                                                                                                                                                                                 |
| Storage and separation tools                                                                                                                                                                                                                                                                                          |
| Subscribe to list                                                                                                                                                                                                                                                                                                     |

Figure 2- Registration form.

After registration, all attendees received the confirmation, as shown in Figure 3.





Dear \*|FNAME|\*,

Thank you for registering for the 1st Hands-on Session in the use of e-Laboratory.

Your seat is confirmed for:

Date: 27 June 2018

Time: 11:00 am London, GMT +1

Shortly before the event you will receive the link to join the webinar.

But before the webinar you have an opportunity to login to our e-Laboratory platform to test and learn the available tools produced during the first year of the project. Please do it and be ready to ask questions and to give a feedback. You will have this account valid for 2 weeks before and 2 weeks after the webinar, after the account will get void and we will continue working on the platform improvement.

#### Here are the connection details:

URL: https://elab-prod.iket.kit.edu/

Username: handson1806
Password: +e-laboratory+

Finally, here's three things to remember:

- 1. BLOCK OUT 2 HOURS: Make sure that you block out a full 2 hours for the webinar in your calendar and it's a good idea to put a sticky note on your computer so that you remember the time.
- 2. SHOW UP EARLY: Even though it the webinar will be recorded make sure that you attend live and show up at least 5-minutes early so you could have chance to ask all questions. The software we use has an attendee limit and with dozens of people, we'll fill up fast.
- **3. USE A DESKTOP COMPUTER:** Make sure that you attend the webinar using your LAPTOP or DESKTOP computer. The webinar system we use doesn't behave well with mobile so using a computer will dramatically improve your experience and allow you to learn more.

We looking forward to see you at webinar \*|FNAME|\*, where we will discuss the implemented tools and you can receive answers on all you questions.

Figure 3 - Registration confirmation.

The total number of registered participants were 91 out of 8316 showing the response rate of about 1.1%. The registered audience was represented by top locations outlined in Figure 3.



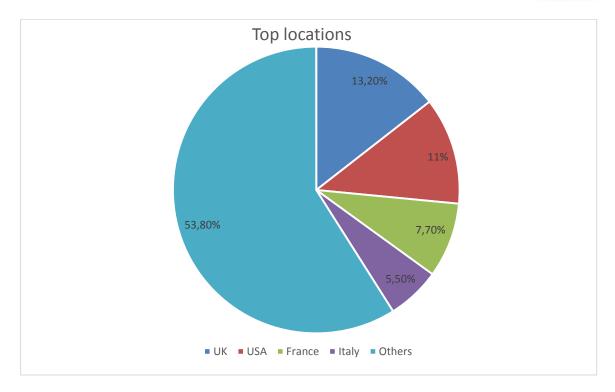



Figure 4 - Audience top locations.

Scheduled reminders were set up to inform attendees about the forthcoming event 1 day and 1 hour in advance, before the webinar.

### 4 Platform and testing organisation

For the hands on session, the dedicated server was set up by PersEE at KIT facility and generic account was provided for all users to allow them to run and test the tools available up to date.

#### Here are the connection details:

URL: <a href="https://elab-prod.iket.kit.edu/">https://elab-prod.iket.kit.edu/</a>

Username: handson1806 Password: +e-laboratory+

#### 5 Registered statistics

During registration the question was asked: "Why would you like to attend the event?". The answers can be divided into 5 main categories. Typical answer examples representing each castegory are shown below:

- Interest in the field
  - o To better understand the online engineering tools
  - We are interested in hydrogen training tools
  - Get to know the available numerical modelling tools related to hydrogen energy technology.
- Partner
  - o To see you did a good job :-)!
- Professional interest



- o I work in the area of renewable energy
- Experienced Hydrogen Educator and Practitioner, keen to see the advantages of NET-Tools
- My research activities are focused on the development of energy systems with fuel cells and of electrolyser for hydrogen production using renewable sources, therefore I am interested in all the sessions.
- Online learning
  - o To learn about Net-tools
  - Learning about e-laboratory
  - o To learn
- Test tools
  - We would like to review the safety tools around hydrogen
  - o To check the suitability of tools

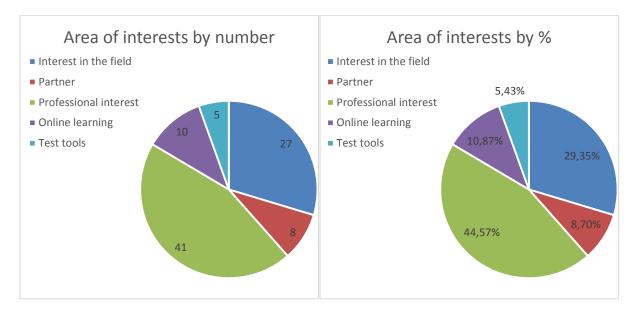



Figure 5 - Area of interests

It can be seen from the diagram that the majority of registered have professional interest nearly 45%, around 30% registered to express interest in the field, nearly 11% to learn and about 5.5% to test the platform. The rest 8.7% are participants from the consortium.

From Figure 6 it can be seen that industrial representatives registered for the session are 10% more than the academia and research group.

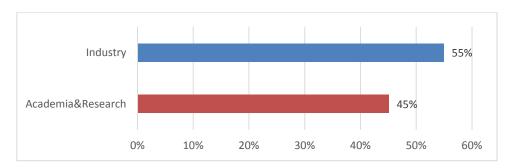



Figure 6 - Representatives by origin.



#### 6 Hands-on organisation

The hands-on session was organised in the following way.

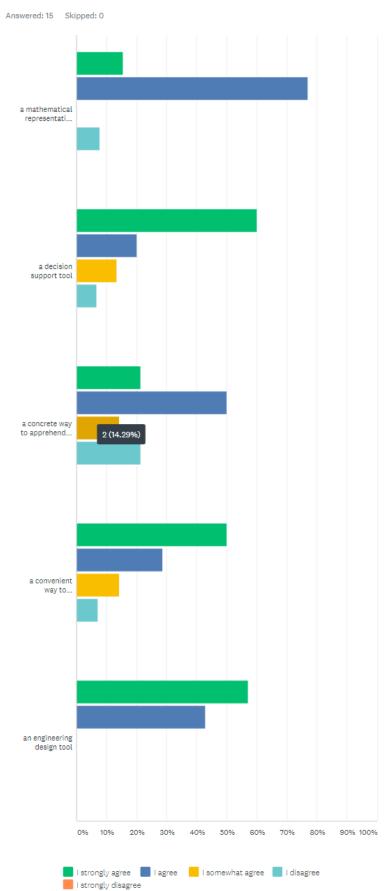
Two weeks before the session all registered received email with access to the e-Laboratory to test the tools. Every tool available on the platform has its own description and all the references.

During webinar, the presentation was given outlining all available current tools and those due to be delivered within the scope of the project. After the presentation attendees were encouraged to ask questions by means of online chat, while the presenter was reading them and answering by voice.

The webinar was recorded and the video was distributed together with feedback form to all who registered for the session.

Video is available from https://youtu.be/FL-EUiudDZ4

The webinar had been attended by 28 participants. In addition to project members, participants included representatives from industry and academia.


#### 7 ANNEX 1: Feedback results from hands on session

Online feedback form was prepared well in advance by PersEE to collect he feedback from participants of the hands-on session.

The feedback form contains 10 questions, and the results of the respondents are presented below. An online version is also available from <a href="https://www.surveymonkey.com/r/FZ6P2CH">https://www.surveymonkey.com/r/FZ6P2CH</a>.



on Essence of 'tool': What is a tool?



[D3.6 Hands-on Training of Industrial Users, Session 1 version v1.3.docx]



|                                                                                | I<br>STRONGLY<br>AGREE | I<br>AGREE   | I<br>SOMEWHAT<br>AGREE | I<br>DISAGREE     | I<br>STRONGLY<br>DISAGREE | TOTAL<br>RESPONDENTS |
|--------------------------------------------------------------------------------|------------------------|--------------|------------------------|-------------------|---------------------------|----------------------|
| a mathematical<br>representation<br>of a technical or<br>economic<br>behaviour | 15.38%<br>2            | 76,92%<br>10 | 0.00%                  | 7.69%<br>1        | 0.00%                     | 13                   |
| a decision<br>support tool                                                     | 60.00%<br>9            | 20.00%<br>3  | 13.33%<br>2            | <b>6.67%</b><br>1 | 0.00%<br>0                | 15                   |
| a concrete way<br>to apprehend a<br>new scientific<br>method                   | 21.43%<br>3            | 50.00%<br>7  | 14.29%<br>2            | 21.43%<br>3       | 0.00%<br>0                | 14                   |
| a convenient<br>way to exemplify<br>a course and<br>progress<br>education      | 50.00%<br>7            | 28.57%<br>4  | 14.29%<br>2            | 7.14%<br>1        | 0.00%<br>O                | 14                   |
| an engineering<br>design tool                                                  | 57.14%<br>8            | 42.86%<br>6  | 0.00%<br>O             | 0.00%<br>0        | 0.00%<br>0                | 14                   |





## Scope of tools: What topics should the tools address? Tick when appropriate

Answered: 15 Skipped: 0



| ANSWER CHOICES                               | RESPONSES |    |
|----------------------------------------------|-----------|----|
| Hydrogen safety                              | 100.00%   | 15 |
| Hydrogen production                          | 60.00%    | 9  |
| Hydrogen storage                             | 80.00%    | 12 |
| Hydrogen assets & Fuel cell techno economics | 60.00%    | 9  |
| Fuel cell electrochemistry                   | 46.67%    | 7  |
| Component materials                          | 40.00%    | 6  |
| Supply chain analysis                        | 40.00%    | 6  |
| Solid H2                                     | 13.33%    | 2  |
| Liquid / Liquid organic H2                   | 40.00%    | 6  |
| Hydrogen mixtures                            | 33.33%    | 5  |
| Others (please specify)                      | 6.67%     | 1  |
| Total Respondents: 15                        |           |    |
| ,                                            |           |    |



List of tools: Below the list of tools which Net Tools aims to deliver. Out of these, which are the ones you are planning to use? Tick when appropriate.

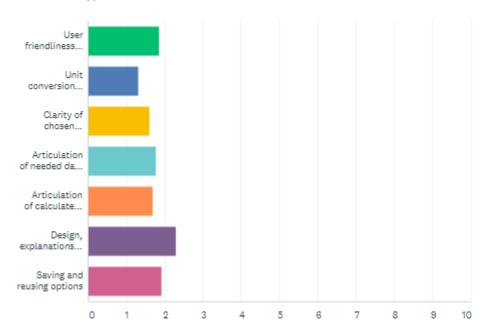
planning to use? Tick when appropriate. Answered: 15 Skipped: 0 Design & Optimisation... Simulation of SOFC based o... Energy balances and... Cell and stack models for b... Thermo-mechanic al models to... Storage material... Simulation of FC system... Jet parameters model Flame length correlation ... Similarity law for... Passive ventilation ... Mitigation of uniform mixt... Forced ventilation... buoyancy on... Pressure peaking... Upper limit of hydrogen... Mitigation of localised... Effect of buoyancy on... Calculation of fireball... Choked flow calculation... Normal Hydrogen... The Abel-Noble EOS to... Fundamental electrochemi... Multiphysics... Modelling of transport... Any other tool you would li...

[D3.6 Hands-on Training of Industrial Users, Session 1 version v1.3.docx]

20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 10%

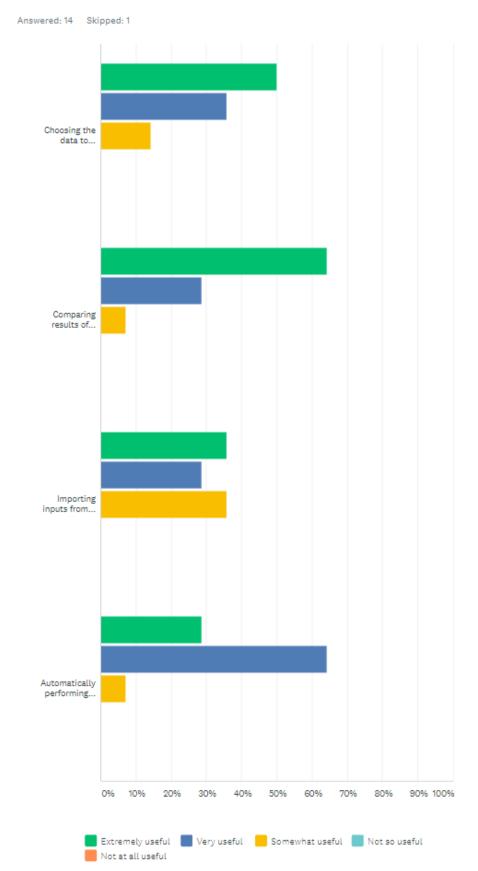



| ANSWER CHOICES                                                                                                                                                                                                                                                                                  | RESPONS | SES |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| Design & Optimisation of hybrid RES – Hydrogen autonomous power systems for isolated communities and sites                                                                                                                                                                                      | 46.67%  | 7   |
| Simulation of SOFC based on natural gas as fuel                                                                                                                                                                                                                                                 | 26.67%  | 4   |
| Energy balances and hydrogen costs for various electrolysis techniques                                                                                                                                                                                                                          | 46.67%  | 7   |
| Cell and stack models for both fuel cells and electrolysis                                                                                                                                                                                                                                      | 33.33%  | 5   |
| Thermo-mechanical models to predict lifetime of high temperature FCs and electrolysis                                                                                                                                                                                                           | 26.67%  | 4   |
| Storage material properties estimation and performance assessment based on a<br>"materials-by-design" multi-scale approach                                                                                                                                                                      | 13.33%  | 2   |
| Simulation of FC system integrated into mCHP application, including electrolyser operation                                                                                                                                                                                                      | 26.67%  | 4   |
| Jet parameters model                                                                                                                                                                                                                                                                            | 73.33%  | 11  |
| Adiabatic and isothermal model of blowdown of storage tank dynamics                                                                                                                                                                                                                             | 73.33%  | 11  |
| Flame length correlation and three hazard distances for jet fires                                                                                                                                                                                                                               | 73.33%  | 11  |
| Similarity law for concentration decay in hydrogen expanded and under-expanded jets and unignited jet hazard distances                                                                                                                                                                          | 60.00%  | 9   |
| Pressure peaking phenomenon for unignited releases                                                                                                                                                                                                                                              | 46.67%  | 7   |
| Passive ventilation in an enclosure with one vent: uniform hydrogen concentration                                                                                                                                                                                                               | 60.00%  | 9   |
| Mitigation of uniform mixture deflagration by venting technique                                                                                                                                                                                                                                 | 53.33%  | 8   |
| Forced ventilation system parameters                                                                                                                                                                                                                                                            | 40.00%  | 6   |
| Blast wave from high-pressure rupture without and with combustion                                                                                                                                                                                                                               | 53.33%  | 8   |
| Effect of buoyancy on decrease of hazard distance for unignited releases                                                                                                                                                                                                                        | 53.33%  | 8   |
| Pressure peaking phenomenon for ignited releases                                                                                                                                                                                                                                                | 40.00%  | 6   |
| Upper limit of hydrogen inventory in closed space                                                                                                                                                                                                                                               | 46.67%  | 7   |
| Mitigation of localised non-uniform deflagration by venting                                                                                                                                                                                                                                     | 53.33%  | 8   |
| Effect of buoyancy on hazard distances for jet fires                                                                                                                                                                                                                                            | 33.33%  | 5   |
| Calculation of fireball diameter for rupture in a fire of a stand-alone and an undervehicle hydrogen storage tanks                                                                                                                                                                              | 53.33%  | 8   |
| Choked flow calculation using NIST-EoS                                                                                                                                                                                                                                                          | 40.00%  | 6   |
| Normal Hydrogen thermo-physical properties using the NIST-EoS, (Helmholtz free energy based)                                                                                                                                                                                                    | 53.33%  | 8   |
| The Abel-Noble EOS to calculate CGH2 mass in a volume at particular pressure and density                                                                                                                                                                                                        | 33.33%  | 5   |
| Fundamental electrochemistry equations, design PEM, optimal porosity of gas diffusion electrodes, ionic conductivity: a. Electrochemical potential; b. Nernst equation; c. Faraday laws of electrolysis; d. Butler-Volmer equation; e. Tafel equation; f. Ionic conductivity g. Levich equation | 20.00%  | 3   |
| Comsol Multiphysics for simulation of hydrogen production and FCH technologies                                                                                                                                                                                                                  | 13.33%  | 2   |
| Modelling of transport processes in electrodes and electrolytes                                                                                                                                                                                                                                 | 13.33%  | 2   |
| Any other tool you would like to see added?                                                                                                                                                                                                                                                     | 6.67%   | 1   |
| Total Respondents: 15                                                                                                                                                                                                                                                                           |         |     |



## Q4 Functionalities of the tools: How would you rate?

Q


Answered: 14 Skipped: 1



|                                                                                        | EXCELLENT   | GOOD        | FAIR        | TO BE<br>IMPROVED | TOTAL | WEIGHTED<br>AVERAGE |
|----------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------------|-------|---------------------|
| User<br>friendliness<br>of the<br>interface?                                           | 42.86%<br>6 | 35.71%<br>5 | 14.29%<br>2 | 7.14%<br>1        | 14    | 1.86                |
| Unit<br>conversion<br>possibilities?                                                   | 69.23%<br>9 | 30.77%<br>4 | 0.00%       | 0.00%             | 13    | 1.31                |
| Clarity of<br>chosen<br>dimensions<br>of input<br>parameters<br>(single tools)         | 46.15%<br>6 | 46.15%<br>6 | 7.69%<br>1  | 0.00%<br>0        | 13    | 1.62                |
| Articulation<br>of needed<br>data to start<br>accurate<br>calculation<br>(sufficiency) | 30.77%<br>4 | 61.54%<br>8 | 7.69%<br>1  | 0.00%<br>0        | 13    | 1.77                |
| Articulation<br>of calculated<br>output<br>(sufficiency)                               | 38.46%<br>5 | 53.85%<br>7 | 7.69%<br>1  | 0.00%<br>0        | 13    | 1.69                |
| Design,<br>explanations<br>and graphical<br>articulation<br>(schemes)                  | 30.77%<br>4 | 23.08%<br>3 | 30.77%<br>4 | 15.38%<br>2       | 13    | 2.31                |
| Saving and reusing options                                                             | 38.46%<br>5 | 38.46%<br>5 | 15.38%<br>2 | 7.69%<br>1        | 13    | 1.92                |

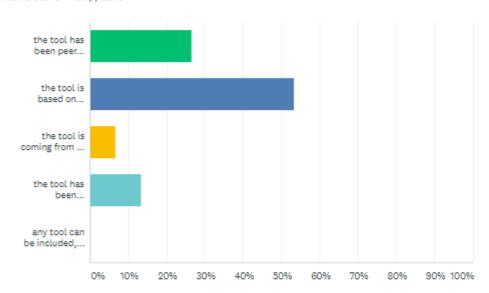


### Can you rate the usefulness of the following proposed features?



[D3.6 Hands-on Training of Industrial Users, Session 1 version v1.3.docx]




|                                                                                                     | EXTREMELY<br>USEFUL | VERY<br>USEFUL | SOMEWHAT<br>USEFUL | NOT SO<br>USEFUL | NOT AT<br>ALL<br>USEFUL | TOTAL |
|-----------------------------------------------------------------------------------------------------|---------------------|----------------|--------------------|------------------|-------------------------|-------|
| Choosing the data to visualize on charts (selection of axis)                                        | 50.00%<br>7         | 35.71%<br>5    | 14.29%<br>2        | 0.00%            | 0.00%                   | 14    |
| Comparing<br>results of<br>different<br>calculations                                                | 64.29%<br>9         | 28.57%<br>4    | 7.14%<br>1         | 0.00%<br>0       | 0.00%<br>0              | 14    |
| Importing inputs from file (excel, json)                                                            | 35.71%<br>Б         | 28.57%<br>4    | 35.71%<br>5        | 0.00%<br>0       | 0.00%<br>0              | 14    |
| Automatically performing multiple calculations, with variation of one input between selected limits | 28.57%<br>4         | 64.29%<br>9    | 7.14%<br>1         | 0.00%<br>0       | 0.00%<br>0              | 14    |

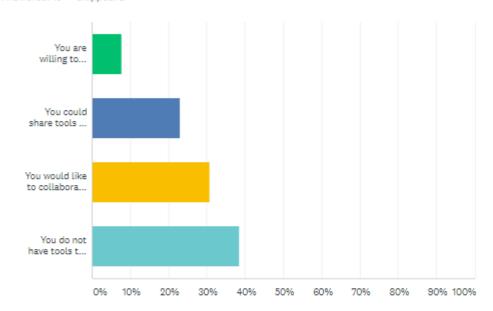




### Governance of the tools: What best describes the eligibility condition for a tool eligible to sit in eLaboratory

Answered: 15 Skipped: 0




| ANSWER CHOICES                                              | RESPONSES |    |
|-------------------------------------------------------------|-----------|----|
| the tool has been peer reviewed without publication         | 26.67%    | 4  |
| the tool is based on peer-reviewed publication              | 53.33%    | 8  |
| the tool is coming from a major educational institution     | 6.67%     | 1  |
| the tool has been demonstrated in a significant environment | 13.33%    | 2  |
| any tool can be included, the users will rate them          | 0.00%     | 0  |
| TOTAL                                                       |           | 15 |

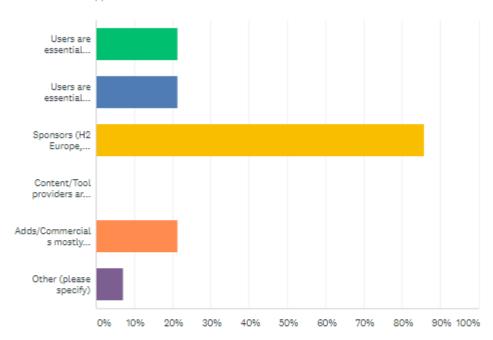




## Further tool development: How do you see yourself in the development of eLab?

Answered: 13 Skipped: 2




| ANSWER CHOICES                                                                                         | RESPON | SES |
|--------------------------------------------------------------------------------------------------------|--------|-----|
| You are willing to share the tools you have developed yourself in a format required by eLab guidelines | 7.69%  | 1   |
| You could share tools if the integration work is done by third parties at no cost                      | 23.08% | 3   |
| You would like to collaborate on the development of future tools                                       | 30.77% | 4   |
| You do not have tools to share but you could consider helping the promotion/dissemination of eLab      | 38.46% | 5   |
| TOTAL                                                                                                  |        | 13  |

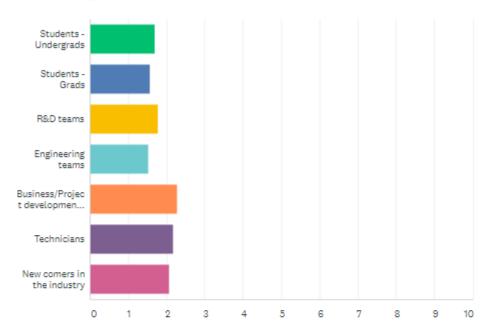




Business model of eLab: What are the options you see viable to support the development of eLab at the end of Net Tools project?

Answered: 14 Skipped: 1




| ANSWER CHOICES                                                                                 | RESPON | ISES |
|------------------------------------------------------------------------------------------------|--------|------|
| Users are essential contributors: they pay based on their use                                  | 21.43% | 3    |
| Users are essential contributors: they pay a yearly fee                                        | 21.43% | 3    |
| Sponsors (H2 Europe, Corporates) are essential contributors: eLab should be kept open to all!  | 85.71% | 12   |
| Content/Tool providers are essential contributors: they pay for the integration of their tools | 0.00%  | 0    |
| Adds/Commercials mostly contribute to finance eLab                                             | 21.43% | 3    |
| Other (please specify)                                                                         | 7.14%  | 1    |
| Total Respondents: 14                                                                          |        |      |





### eLaboratory Users: : Who will most likely use eLab?

Answered: 15 Skipped: 0



|                                          | CERTAINLY   | MOST<br>LIKELY | UNLIKELY    | CERTAINLY<br>NOT | TOTAL | WEIGHTED<br>AVERAGE |
|------------------------------------------|-------------|----------------|-------------|------------------|-------|---------------------|
| Students -<br>Undergrads                 | 38.46%<br>5 | 53.85%<br>7    | 7.69%<br>1  | 0.00%<br>0       | 13    | 1.69                |
| Students - Grads                         | 50.00%<br>7 | 42.86%<br>6    | 7.14%<br>1  | 0.00%            | 14    | 1.57                |
| R&D teams                                | 46.15%<br>6 | 38.46%<br>5    | 7.69%<br>1  | 7.69%<br>1       | 13    | 1.77                |
| Engineering<br>teams                     | 46.67%<br>7 | 53.33%<br>8    | 0.00%       | 0.00%<br>0       | 15    | 1.53                |
| Business/Project<br>development<br>teams | 20.00%<br>3 | 40.00%<br>6    | 33.33%<br>5 | 6.67%<br>1       | 15    | 2.27                |
| Technicians                              | 16.67%<br>2 | 50.00%<br>6    | 33.33%<br>4 | 0.00%<br>0       | 12    | 2.17                |
| New comers in the industry               | 25.00%<br>3 | 41.67%<br>5    | 33.33%<br>4 | 0.00%            | 12    | 2.08                |





## We would appreciate if you could give us some information about you

Answered: 11 Skipped: 4

| ANSWER CHOICES  | RESPONSES |    |
|-----------------|-----------|----|
| Name            | 100.00%   | 11 |
| Company         | 90.91%    | 10 |
| Address         | 0.00%     | 0  |
| Address 2       | 0.00%     | 0  |
| City/Town       | 0.00%     | 0  |
| State/Province  | 0.00%     | 0  |
| ZIP/Postal Code | 0.00%     | 0  |
| Country         | 100.00%   | 11 |
| Email Address   | 90.91%    | 10 |
| Phone Number    | 0.00%     | 0  |



### 8 ANNEX 2: Report on 2<sup>nd</sup> e-Newsletter

27/8/2018

NET TOOLS #2 (copy 01)

# NET TOOLS #2 (Copy 01)

Sent

Thu, May 10, 2018 4:14 am